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The concept of hydrogen bonding as a specific interaction paved the way for synthetic

receptor synthesis and programmed self-organization and supramolecular synthesis based

upon the recognition of the hydrogen bond active sites of two or more subunits. The

nature of any newly obtained species will depend upon the information stored in the

parent compounds. Molecular engineering approaches to the synthesis of new organic

solid state materials may replace techniques such as microlitography and vapor

deposition.

The goals of our studies are:

Control over the symmetry of molecular assemblies in three dimensional structures

through control over the site-symmetry of molecular self- and/or hetero-aggregates.

Control and optimization of the orientation of charge transfer axes toward optical

directions in the crystals for NLO applications.

Among the symmetry elements determining the space groups in organic molecular

crystals, the inversion center plays a pivotal role. Indeed, its absence is an absolute

prerequisite toward nonlinear effects. Thus, we have undertaken the effort to examine

systematically the relationships between the molecular and crystalline symmetry. In order

to clarify these relationships, the following notation will be used: small letters will

represent molecular point group types, capital letters crystal point group types.

Type a (or A) denotes the presence of direct rotation axis only.

Type m (or M) denotes the presence of mirrors (plane of symmetry) or inverse 4-

rotation, and, eventually, the presence of direct rotation axis.

Type i (or I) characterizes the presence of inversion center among the group

elements.

a :,A

mol. crystal
2-fold axis 2-fold axis For

m M [Fi

mol. crystal F)
mirror planes of
plane symmetry

In our dign effort, we seek to replace the inversion center I in the crystal for another

symmetry element A or M. ¶/or
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Results:

Our specific goals are to design and synthesize urea based cocrystals in which the twofold

symmetry and hydrogen bond characteristics of the urea molecule guide the self-

organization into noncentrosymmetric motifs. The two-fold symmetry, bifunctionality and

high density of hydrogen bonds make the urea molecule ideal for the approach as these

factors may override the influence of dipolar forces which tend to favor centrosymmetric

lattices.

Figure 1 depicts the unique structural aspects and symmetry of the urea molecule: urea is

bi-functional, i -, it can serve as beth proton donor and proton acceptor. it is tiat ana

possesses a 2-fold axis and a mirror plane, and contains four proton donor sites and one

oxygen accepting site. However, the oxygen site can accept up to four hydrogen bonds

arranged with local C2v symmetry. The hydrogen bond acceptor and donor sites are

sterically accessible and can provide a directing influence over the aggregate symmetry.

"is *0,,
0\0

H C.. • .N IH

H, H

Fig. 1. Spatial orientation of the hydrogen bond activity of urea molecule
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We have synthesized and studied the structures of 10 cocrystals of urea with dicarboxylic

acids:

Urea/Succinic - (2:1)

Urea/Maleic - (1: 1), (1:2) and (2:1) cocrystals

Urea/Fumaric - (2:1)

Urea/Glutaric - (1:1) and (2:1) cocrystals

Urea/Adipic (1:1) and (2:1) cocrystals

Urea/Azelaic (1:1) and (2:1) cocrystals

The most important structural data are collected in Tables 1, 2 and 3.

As shown in scheme 1 the symmetry of the aggregate chains is controlled by the

symmetry of the urea molecule, the number of carbon atoms in the acid chain (odd, even),

and the stoichiometric ratio of the parent compounds. The only case where no inversion

center is introduced into aggregate chains is in the 1:1 urea/dicarboxylic acid complex, in
which the acid has an odd number of carbon atoms.

1:1 Urea/Dicarboxylic Acids

7. n -odd
urea carboxylic

add

n -even

2:1 Urea/Dicarboxylic Acids

Z .. -.. N!. n -odd

N -7N 7.F4 n-even

Scheme 1. Symmetry control in urca/dicarboxylic acid hetero-aggregate chains
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Scheme 2 and 3 depict the hydrogen bond motifs of the heteroaggregates in 1-1

urea/dicarboxylic acids with n- odd or even number. Only two accepting and two

donating abilities of urea are used to form polar chains. However, as it was already

mentioned, urea is capable of accepting 4 donors and 4 acceptors. These additional
hydrogen bond capabilities are used in order to form 2-D and 3-D networks (see Fig 2, 3),

which are not necessarily acentric.

n = even

H H
I I

,Fo1"I'-ll 1N2 - .. ,-.. ,,,C 10  H,,,,- .-
H H 02 ,O,02 H H

PIN, C2, C1I. ~H P H C1. C2  ~P I-", "H:.' C1.1 ;C? 01 -b O, C C, H,.: •

"•:I , ."H / : 2iI" ",,•,

H HH H H1. : H'=

Scheme 2. Hydrogen bond connectivity pattern in heteroaggregate 1:1 urealsuccinic acid

n = odd

H H H H H H
I I I I I I

•,H 2 Co NJ Y 1. , ,H C 2, N C1 0  H,1

""00 /0 , H .,' , 1H
I C2 C~ 01 *b--"C1.%C3%C2 01

H HH H H HH H

Scheme 2 Hydrogen bond connectivity pattern in hetero-aggregate 1:1 urea/glutaric acid

5



Schemes 4 and 5 depict the connectivity pattern of the hydrogen bonded hetero-

aggregates (chains) in 2:1 urea/dicarboxylic acids extended to next hetero-aggregates

(chains) to form 2-D and 3-D hydrogen bonded networks. In all crystals with ri-odd

number of carbon atoms, the hydrogen bonded chains assemble into 2-D layers (fig.2).

However in cocrystals with n-even number of C-atoms, the hydrogen bonded chains are

arranged in a complex 3-D networks (fig 3).

n = even

H H
I IO ,• "-,• H'Iy'cN 2 ""

,H�H i C H,, ,
H HH 10 '

H 02
N .N ...0 1-_C2-,, ,..C1. 'H H•. -C%- ..H

0 H,, ,,H Ct •C 1 O< N N" It " c• II ./ ._ I I
"1 "00H" H H H H

H H

Scheme 5. Hydrogen bond connectivity pattern in hetero-aggregate 2:1 urea/succinic acid

n = odd

000 24 01 O1"AHPONHO2,C,N I N,,oN2H HI I I i

• ,,,, ,,, ,m,,,, ... - Yr,,,,, i,N 2 ,,,,

H H H H

Scheme 6. Hydrogen bond connectivity pattern in hereo-aggregate 2:1I urea/glutaric acid
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Fig. 2a Stereoview of the unit cell of 1: 1 urea/glutaric cocrystal.

Fig. 2b Stereoview of the two dimmensional molecular layer depicting the

hydrogen bond connectivity patterns in 1:1 urea/glutaric acid cocrystal
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|T,

Fig. 3a. Two dimmensional hydrogen bond connectivity patterns in

2:1 urea/succinic acid cocrystal.

Fig 3b. Three dimmensional hydrogen bond connectivity patterns

in 2:1 urea/succinic acid cocrystal.
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interesting class of cocrystals appear to be the urea complexes with maleic acid. We have
synthesized and characterized by FTIR and NMR and melting points three different
cocrystals (1:1, 1:2 and 2:1 urea/maleic acid) (fig 4, 5). The weak C-H...O and C-H...N

bonds play significant role for stabilizing the structure of those crystals. Each two
hydrogen bonded molecular hetero-aggregates (1:2 urea maleic acid) form a

centrosymmetric super-aggregate through weaker N-H...O bonds, which in turn -•re
combined through numerous C-H...O bonds into a nonpolar molecular sheets. In the 1:1

complex the strongest 0-H...O and N-H ...0 interactions are used to form weakly polar
chains. The y-components of urea dipole moments cancel in the 3-D networks, but the x-

and z- components are non-zero. The chains are connected into polar sheets by weaker N-
H.. .0 bonds. Additional weak C-H...0 bonds control the molecular forces between the
sheets. This fact is very likely to be decisive for the noncentrosymmetric arrangement of

1:1 urea/maleic acid molecular aggregates in a noncentosymmetric 3-D networks.

a

A

"erA44-. .%ýYh" A••.•
4'r4

Fig. 4. Stereoview of 1:2 urea/maleic acid hetero-aggregate (a) and the hydrogen

bonded molecular layer (b).
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a

0 C ý

b

Fig. 5. Stereoview of the 1: 1 urealmaleic: acid hetero-aggregate (a) and the hydrogen
bonded polar layer (b).
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